Error message
- Deprecated function: TYPO3\PharStreamWrapper\Manager::initialize(): Implicitly marking parameter $resolver as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
- Deprecated function: TYPO3\PharStreamWrapper\Manager::initialize(): Implicitly marking parameter $collection as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
- Deprecated function: TYPO3\PharStreamWrapper\Manager::__construct(): Implicitly marking parameter $resolver as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
- Deprecated function: TYPO3\PharStreamWrapper\Manager::__construct(): Implicitly marking parameter $collection as nullable is deprecated, the explicit nullable type must be used instead in include_once() (line 19 of includes/file.phar.inc).
- Deprecated function: UpdateQuery::expression(): Implicitly marking parameter $arguments as nullable is deprecated, the explicit nullable type must be used instead in require_once() (line 1884 of includes/database/database.inc).
- Deprecated function: MergeQuery::expression(): Implicitly marking parameter $arguments as nullable is deprecated, the explicit nullable type must be used instead in require_once() (line 1884 of includes/database/database.inc).
- Deprecated function: SelectQueryInterface::getArguments(): Implicitly marking parameter $queryPlaceholder as nullable is deprecated, the explicit nullable type must be used instead in require_once() (line 1884 of includes/database/database.inc).
- Deprecated function: SelectQueryInterface::preExecute(): Implicitly marking parameter $query as nullable is deprecated, the explicit nullable type must be used instead in require_once() (line 1884 of includes/database/database.inc).
- Deprecated function: SelectQueryExtender::getArguments(): Implicitly marking parameter $queryPlaceholder as nullable is deprecated, the explicit nullable type must be used instead in require_once() (line 1884 of includes/database/database.inc).
- Deprecated function: SelectQueryExtender::preExecute(): Implicitly marking parameter $query as nullable is deprecated, the explicit nullable type must be used instead in require_once() (line 1884 of includes/database/database.inc).
- Deprecated function: SelectQuery::getArguments(): Implicitly marking parameter $queryPlaceholder as nullable is deprecated, the explicit nullable type must be used instead in require_once() (line 1884 of includes/database/database.inc).
- Deprecated function: SelectQuery::preExecute(): Implicitly marking parameter $query as nullable is deprecated, the explicit nullable type must be used instead in require_once() (line 1884 of includes/database/database.inc).
Welcome to Quantiki
Welcome to Quantiki, the world's leading portal for everyone involved in quantum information science. No matter if you are a researcher, a student or an enthusiast of quantum theory, this is the place you are going to find useful and enjoyable! While here on Quantiki you can: browse our content, including fascinating and educative articles, then create your own account and log in to gain more editorial possibilities.
Add new content, such as information about upcoming quantum events, open positions for quantum scientists and existing quantum research groups. We are also distributing news via X (Twitter) feed, Bluesky news feed, and LinkedIn profile. We encourage you to follow us on social media to get the recent news from quantum infromation community.
Submitted by
hpothier on Wed, 30/09/2020 - 11:42.
A deep analogy between topological materials and superconducting devices was recently theoretically established [1], in particular between a 3-dimensional topological solid and a 4-terminal superconducting junction. We propose to explore this analogy by designing and fabricating multiterminal superconducting junctions and by probing their quantized energy spectrum using circuit-QED techniques.
[1] R.-P. Riwar, M. Houzet, J. S. Meyer, Yuli V. Nazarov, Multi-terminal Josephson junctions as topological materials, arXiv:1503.06862
The Experimental Quantum Optics group (https://research.tuni.fi/eqo/) is looking for a motivated postdoc to work on quantum experiments studying fundamental features of photons and their interaction with matter. Besides performing research on the highest-level, the positions will provide the opportunity to develop and refine high-tech skills in quantum technologies, photonics, programming and data analysis.
Submitted by
Mleifer on Mon, 28/09/2020 - 00:34.
Dates:
Monday, March 15, 2021 to Friday, March 19, 2021
The American Physical Society (APS) March Meeting (15-19 March 2021) is currently accepting abstracts for contributed talks with a deadline of October 23.
Submission URL: https://march.aps.org/abstracts/
The APS has announced that the meeting will either take place in an in-person/virtual hybrid format or in a completely virtual format. In either case, participants will have the option of presenting their talk virtually.
Submitted by
Felix Wolf on Fri, 25/09/2020 - 16:06.
Application deadline:
Sunday, November 22, 2020
The Department of Computer Science of Technical University of Darmstadt invites applications for the position of an
Assistant Professor (W2 Tenure Track) for Quantum Computing
starting as soon as possible.
Submitted by
agarttha on Fri, 25/09/2020 - 12:43.
Application deadline:
Thursday, December 31, 2020
Since 1990, the volt has been defined using superconducting devices called Josephson junctions. The DC voltage across a Josephson junction is related only via fundamental constants to the frequency of an applied microwave signal. As existing microwave sources have frequency stability well below one part-per-billion (ppb), so is the precision of the Josephson voltage standard.
Submitted by
QUSTEC_PhD on Mon, 21/09/2020 - 16:41.
Application deadline:
Wednesday, September 30, 2020
Solid-state spins in an optical cavity
The ultimate goal is to create spin-spin entanglements at useful rates. A number of challenges have to be overcome. The materials processing must be improved in order to create optically-coherent NV centres in thin diamond-membranes. Quantum optics-based techniques must be used to quantify the properties of the photons: their purity and indistinguishability. Spin manipulation must be combined with the cavity setup. Techniques must be established to tune remote NV centres into resonance with each other. The project will offer experience in all these fields, along with possibilities to explore the application of the same cavity structure to other solid-state systems, for instance semiconductor quantum dots.
Submitted by
QUSTEC_PhD on Mon, 21/09/2020 - 16:38.
Application deadline:
Wednesday, September 30, 2020
Hybrid quantum networks with atomic memories and quantum dot single-photon sources
The goal of this project is to interface the two systems through an optical fiber link that was recently installed in Basel. Several improvements will be implemented to achieve low-noise operation: controlling the charge state of the dot and enhancing the photon collection efficiency with an optical cavity, as well as controlling the spin state of the atoms to suppress four-wave mixing noise by selection rules. After demonstrating storage and retrieval of quantum dot single photons in the atomic memory, we intend to perform basic quantum networking tasks such as entangling two remote atomic memories.
Submitted by
QUSTEC_PhD on Mon, 21/09/2020 - 16:36.
Application deadline:
Wednesday, September 30, 2020
Experimental Quantum Simulations based on Trapped Ions (& Atoms)
Direct experimental access to the most intriguing and puzzling quantum phenomena is extremely difficult and their numerical simulation on conventional computers can easily become computationally intractable. However, one might gain deeper insight into complex quantum dynamics via experimentally simulating and modelling the quantum behaviour of interest in a second quantum system. There, the significant parameters and interactions are precisely controlled and underlying quantum effects can be detected sufficiently well, thus, their relevance might be revealed. Trapped atomic ions have been shown to be a unique platform for quantum control, evidenced by the most precise operations of quantum information processing and their performance as best atomic clocks. Still, scaling is the major challenge – i.e. the endeavour to control increasingly large systems of particles at the quantum level will be one of the driving forces for physical sciences in the coming decades. We aim to control charged atoms at the highest level possible to further scale many-body (model) systems ion by ion. This approach is, in a way, the ultimate form of engineering - in radio-frequency traps, as well as in all-optical traps, when combined with ultracold atoms.
Submitted by
QUSTEC_PhD on Mon, 21/09/2020 - 16:33.
Application deadline:
Wednesday, September 30, 2020
Wave packet interference experiments for the investigation of ultrafast dynamics and decoherence effects on the attosecond time scale
Supervisor: Prof. Frank Stienkemeier
Eligibility criteria and requirements
The applicant should be a highly motivated early stage researcher with a Master degree in Physics. A solid background in the atomic, molecular and optical physics as well as experience in laser and vacuum technology is needed.
QUSTEC programme follows MSCA eligibility criteria: Required level of experience is ‘Early Stage Researcher’ according to the definition in the work programme of the 2018-2020 Marie Skłodowska-Curie actions: Applicants must, at the date of the respective call deadline of QUSTEC, be in the first four years (full-time equivalent research experience) of their research careers and have not yet been awarded a doctoral degree. Mobility criterion: The applicants must not have resided or carried out their main activity (work, studies, etc.) in the country of the future host organisation for more than 12 months in the 3 years immediately before the call deadline of QUSTEC. Short stays such as holidays are not taken into account. For refugees under the Geneva Convention, the refugee procedure (i.e. before refugee status is conferred) will not be counted as a period of residence/activity in the country of the host organisation.
Submitted by
QUSTEC_PhD on Mon, 21/09/2020 - 16:29.
Application deadline:
Wednesday, September 30, 2020
Understanding and engineering microscopic sources of noise in solid-state quantum devices
PhD supervisors : Dr Clemens Müller and Dr Andreas Fuhrer
Eligibility criteria and requirements
The candidate should have a solid background in quantum mechanics, quantum optics and quantum information theory, ideally with previous experience in the theory of open quantum system. The candidate must be curious to learn and expand her/his expertise on quantum circuit design, condensed matter physics, materials science, surface chemistry, and experimental data analysis. Excellent coding skills and a working knowledge of Mathematica and Python are expected.
QUSTEC programme follows MSCA eligibility criteria: Required level of experience is ‘Early Stage Researcher’ according to the definition in the work programme of the 2018-2020 Marie Skłodowska-Curie actions: Applicants must, at the date of the respective call deadline of QUSTEC, be in the first four years (full-time equivalent research experience) of their research careers and have not yet been awarded a doctoral degree. Mobility criterion: The applicants must not have resided or carried out their main activity (work, studies, etc.) in the country of the future host organisation for more than 12 months in the 3 years immediately before the call deadline of QUSTEC. Short stays such as holidays are not taken into account. For refugees under the Geneva Convention, the refugee procedure (i.e. before refugee status is conferred) will not be counted as a period of residence/activity in the country of the host organisation.
Pages